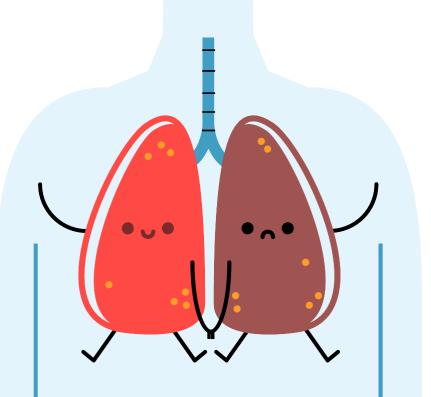
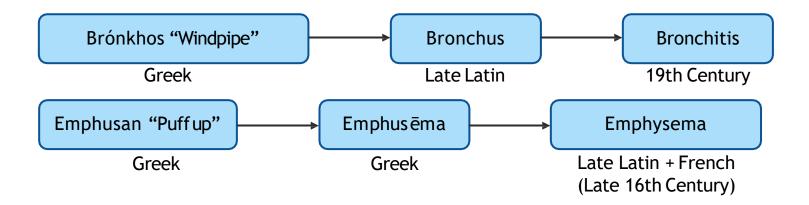
Disclosure


RELEVANT FINANCIAL RELATIONSHIPS

In compliance with continuing education requirements, ACPE, our planners, our presenters, and their spouses/partners wish to disclose we do not have relevant financial relationships with ineligible companies.

Update on COPD Management: The GOLD Guidelines

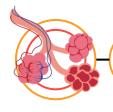
Prepared by: Sayel Rivera-García, PharmD, BCPS and Wanda I Marrero, MSPh, PharmD


Presented by: Wanda I Marrero, MSPh, PharmD

Objective

- Identify the challenges and barriers associated with chronic obstructive pulmonary disease (COPD) management, the disease's burden, and the need to improve patient outcomes.
- Discuss the 2023 Global Initiative for Chronic Obstructive Lung Disease (GOLD guidelines updates and management recommendations.
- Describe non-pharmacological measures recommended for patients with COPD.
- List current and emerging treatments for COPD, including their safety, efficacy, place in therapy, and use in specific patient populations for optimal outcomes.
- Illustrate the role of the pharmacy team in optimizing the care of patients with COPD.

- Chronic obstructive pulmonary disease is a relatively new term
- This term was first used by William Briscoe in late 20th century (1965)
- Before this term COPD has been described as a group of pulmonary diseases with fixed airflow limitation
 - Chronic bronchitis
 - Emphysema



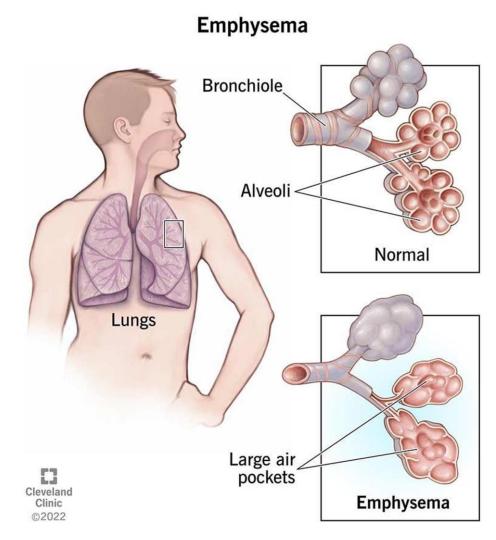
Modern definition:

• GOLD - "Chronic Obstructive Pulmonary Disease (COPD) is a <a href="https://example.com/https://example.c

Previous definition:

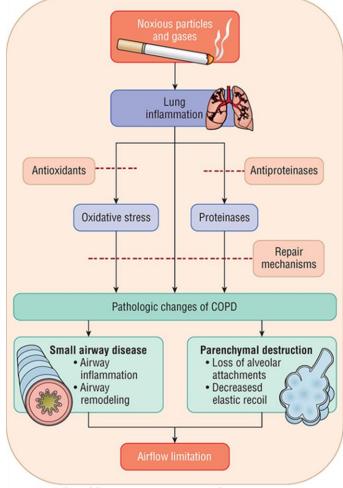

GOLD - "Chronic Obstructive Pulmonary Disease (COPD) is a <u>common, preventable, and</u>
 <u>treatable disease</u> characterized by persistent respiratory symptoms and airflow limitation
 due to abnormalities of the airways and/or alveolar abnormalities <u>usually caused by</u>
 <u>significant exposure to noxious particles and gases and influenced by host factors</u>
 including abnormal lung development".

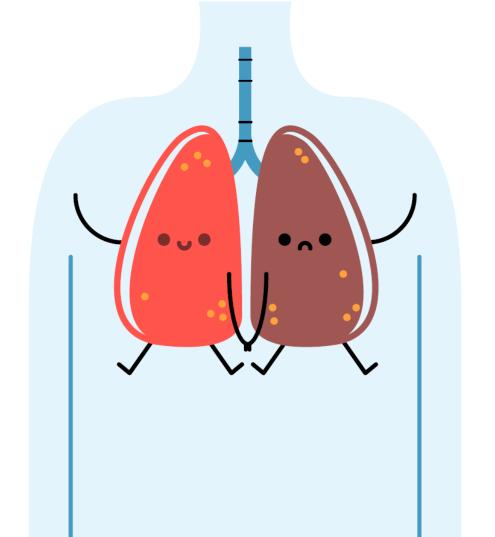
Chronic Bronchitis


- Defined as a clinical term
- Associated with:
 - Chronic or recurrent episodes of excessive mucus secretion into the bronchial tree
 - Cough present on most days for at least 3 months of the year for at least 2 consecutive years
 - In a patient in whom other causes of chronic cough have been excluded

Bronchitis Pharynx Larynx Trachea (windpipe) **Bronchus** Bronchiole Excess mucus Bronchiole-Alveoli (air sacs) Cleveland Clinic © 2022

Emphysema


- Defined as an anatomical pathology
- Emphysema is characterized as an abnormal permanent enlargement of the airspaces distal to the terminal bronchioles accompanied by destruction of their walls without obvious fibrosis



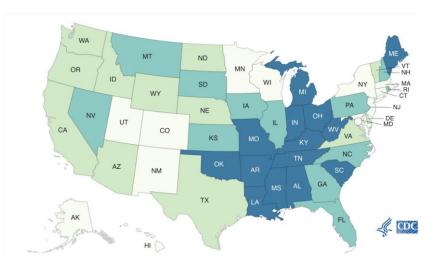
New Emphasis

- Differentiating COPD as either chronic bronchitis or emphysema as distincts subsets is no longer considered relevant
- Both are caused by a common risk factor
- Emphasis on pathophysiologic features of:
 - Small airway disease
 - Parenchymal destruction

Source: Joseph T. DiPiro, Gary C. Yee, Stuart T. Haines, Thomas D. Nolin, Vicki L. Ellingrod, L. Michael Posey: DiPiro's Pharmacotherapy: A Pathophysiologic Approach, 12e Copyright © McGraw Hill. All rights reserved.

Epidemiology

- Approximately 16 million americans are estimated to have COPD
- Cigarette smoking among adults in the United States has declined but prevalence of airflow obstruction and COPD is not expected to decrease in the future
 - Over the last 10 years the use of ecigarettes has increased
- Historically considered a disease affecting white men but women are now more likely to have a diagnosis of COPD than men
- Prevalence is higher in southeastern states

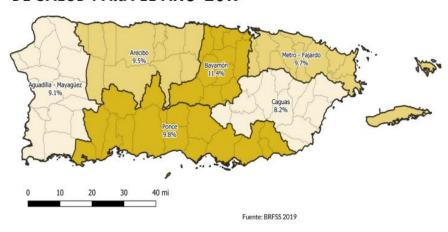

Age-adjusted
Prevalence (%)

3.2 - 4.6

4.7 - 5.4

5.5 - 6.5

6.6 - 11.9


PUERTO RICO

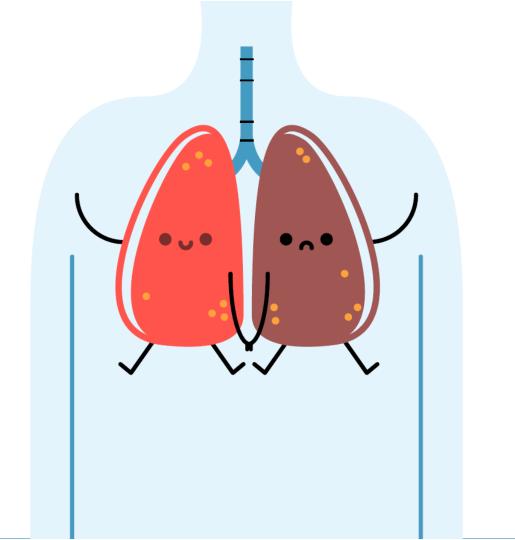
Primeras causas de muertes totales en Puerto Rico, 2019

Taxas de mortalidad ajustada por edad (por cada 100,000 habitantes) Fuente - Departamento de Salud, Registro Demográfico de Puerto Rico, Secretaria Auxiliar de Planificación y Desarrollo, División de Análisis Estadísticos. 2019

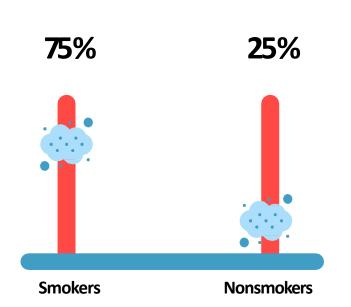
PREVALENCIA DE USO DE TABACO POR REGIÓN 04 DE SALUD PARA EL AÑO-2019

Para el 2019, los residentes de las regiones de Bayamón (11.4%) y Ponce (9.8%) reportaron las prevalencias más altas de uso de tabaco.

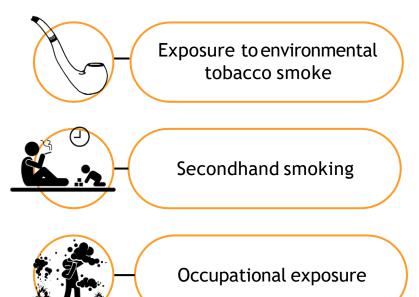
Morbidity & Mortality

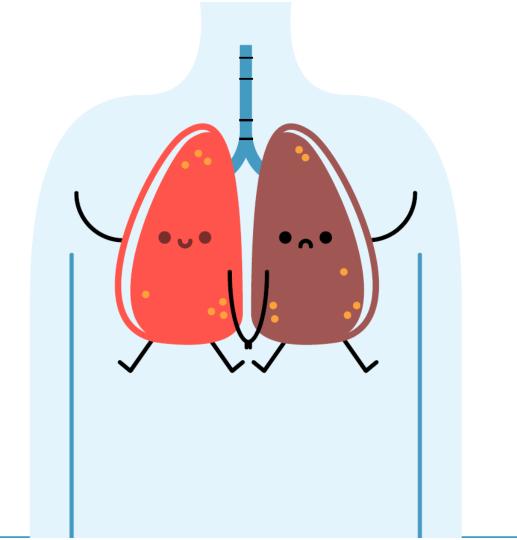

Morbidity

- Cost associated with the disease has significant impact on:
 - Patients & their families →
 Physical activity limitations and inability to work
 - Healthcare system → Annually, patients with COPD account for 700,000 hospitalizations
- An estimated \$32 billions was spent on services related to COPD in 2010
 - \circ 2020 \rightarrow \$49 billions


Mortality

- 4th leading cause of death
- Over 150,000 deaths are attributed to COPD annually
- Mortality rate has increased over the last 40 years





Etiology

Nonsmokers

Risk Factors

Host Factors

Environmental Factors

 α_1 -antitrypsin (AAT) deficiency

Airway Hyperresponsiveness

Impaired lung growth

Environmental tobacco smoke

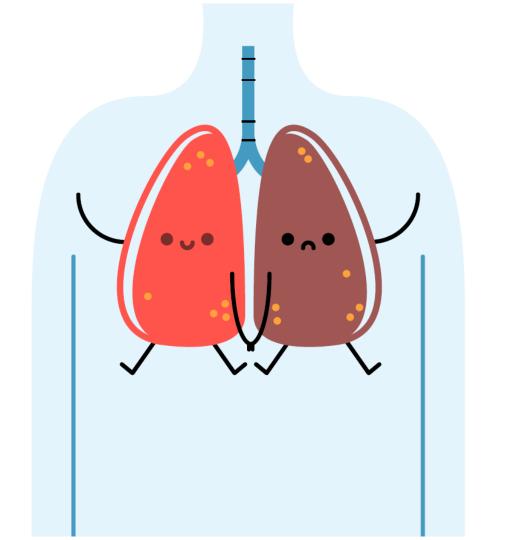
Occupational dust and chemicals

Air pollution

New Clasification Taxonomy (Etiotypes)

Proposed Taxonomy (Etiotypes) for COPD

Table 1.1


Classification	Description		
Genetically determined COPD (COPD-G)	Alpha-1 antitrypsin deficiency (AATD)		
(coro-o)	Other genetic variants with smaller effects acting in combination		
COPD due to abnormal lung development (COPD-D)	Early life events, including premature birth and low birthweight, among others		
Environmental COPD			
Cigarette smoking COPD (COPD-C)	 Exposure to tobacco smoke, including in utero or via passive smoking 		
	 Vaping or e-cigarette use 		
	- Cannabis		
Biomass and pollution exposure COPD (COPD-P)	Exposure to household pollution, ambient air pollution, wildfire smoke, occupational hazards		
COPD due to infections (COPD-I)	Childhood infections, tuberculosis-associated COPD, HIV- associated COPD		
COPD & asthma (COPD-A)	Particularly childhood asthma		
COPD of unknown cause (COPD-U)			

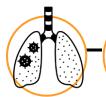
*Adapted from Celli et al. (2022) and Stolz et al. (2022)

Test your knowledge

Which of the following risk factors is consider the first one cause of COPD:

- A. AAT
- B. Premature birth
- C. Pollution
- D. Cigarette Smoking
- E. Infections

Symptoms

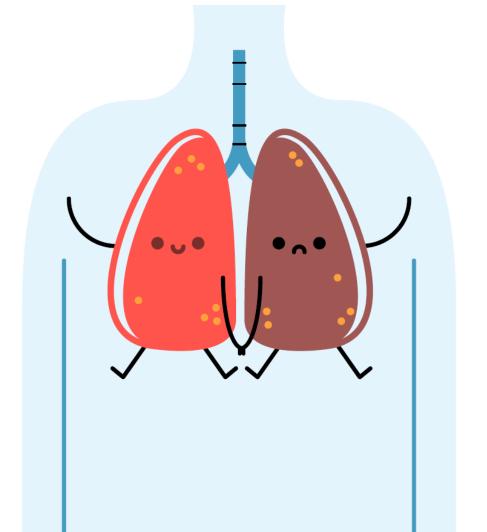


Chronic Cough

May be intermittent and unproductive

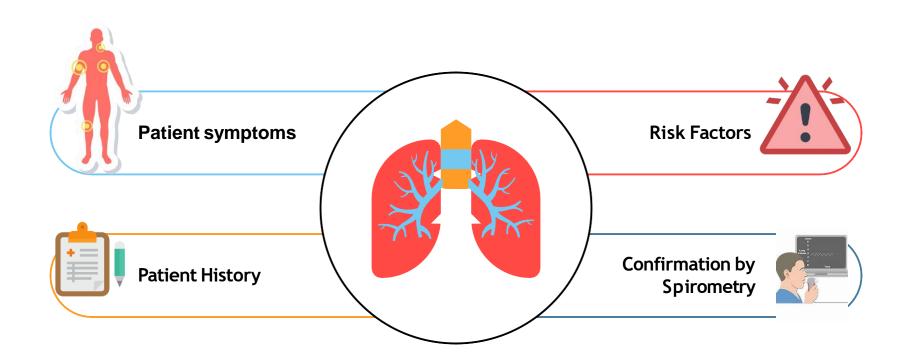
Chronic Sputum Production

Recurrent Respiratory Infections

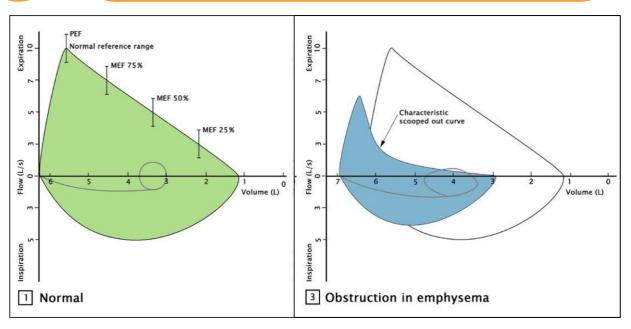


Dyspnea

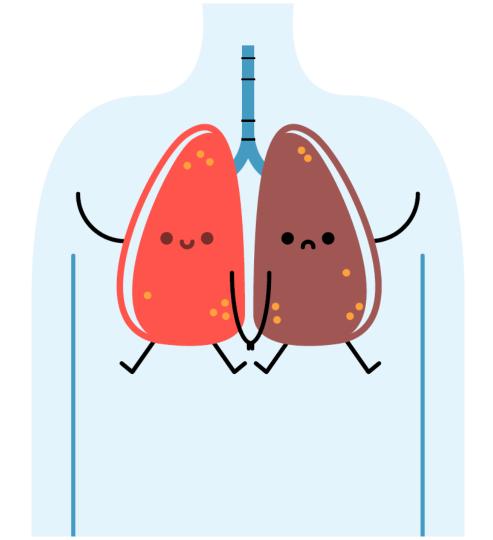
Worse with exercise and progressive overtime



Wheezing

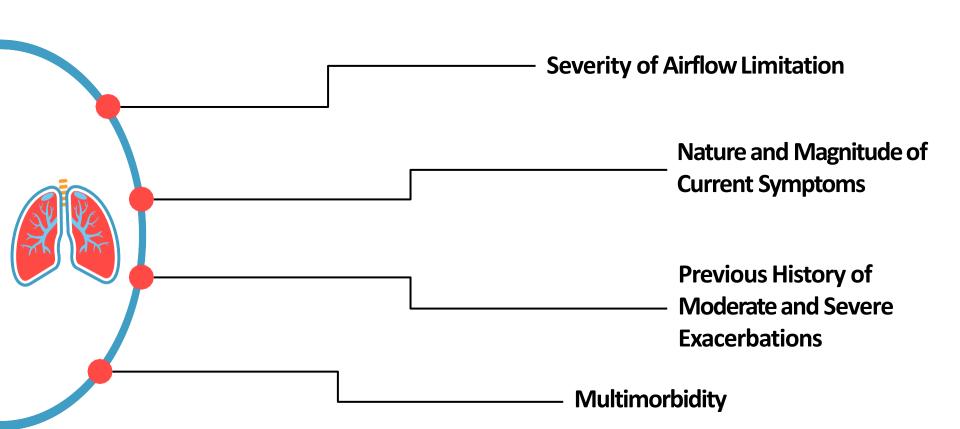

Diagnosis

Confirmation by Spirometry


Flow-Volume Loop



Airflow limitation is confirmed by post-bronchodilator:


• FEV₁/FVC < **70**%

FEV₁ alone is no longer used to determine severity or therapy

Initial Assessment

Severity of Airflow Limitation

GOLD Grades and Severity of Airflow Obstruction in COPD (based on post-bronchodilator FEV1)					
	In COPD patients (FEV1/FVC < 0.7):				
	GOLD 1:	Mild	FEV1 ≥ 80% predicted		
	GOLD 2:	Moderate	50% ≤ FEV1 < 80% predicted		
	GOLD 3:	Severe	30% ≤ FEV1 < 50% predicted		
	GOLD 4:	Very Severe	FEV1 < 30% predicted		

Nature and Magnitude of Symptoms

Modified MRC Dyspnea Scale

Table 2.7

PLEASE TICK IN THE BOX THAT APPLIES TO YOU | ONE BOX ONLY | Grades 0 - 4

mMRC Grade 0 mMRC Grade 1 mMRC Grade 2 mMRC Grade 3 mMRC Grade 4 I only get I get short of I walk slower than I stop for breath I am too breathless with breath when people of the after walking breathless to about 100 meters leave the house strenuous exercise hurrying on the same age on the level because of level or walking or after a few or I am breathless breathlessness, up a slight hill minutes on the when dressing or or I have to stop level undressing for breath when walking on my own pace on the level

Reference: ATS (1982) Am Rev Respir Dis. Nov;126(5):952-6.

Nature and Magnitude of Symptoms

- 8 item dimensional measure of healthstatus impairment in COPD
- Score ranges from 0 to 40 with higher scores indicating increased impairment

CAT™ Assessment

Figure 2.2

For each item below, place a mark (x) in the box that best describes you currently. Be sure to only select one response for each question.

EXAMPLE: I am very happy	0 🗶 2 3 4 5	I am very sad	Score
I never cough	012345	I cough all the time	
I have no phlegm (mucus) in my chest at all	012345	My chest is completely full of phlegm (mucus)	
My chest does not feel tight at all	012345	My chest feels very tight	
When I walk up a hill or one flight of stairs I am not breathless	012345	When I walk up a hill or one flight of stairs I am very breathless	
I am not limited doing any activities at home	012345	I am very limited doing activities at home	
I am confident leaving my home despite my lung condition	012345	I am not at all confident leaving my home because of my lung condition	
I sleep soundly	012345	I don't sleep soundly because of my lung condition	
I have lots of energy	012345	I have no energy at all	

Reference: Jones et al. ERJ 2009; 34 (3); 648-54.

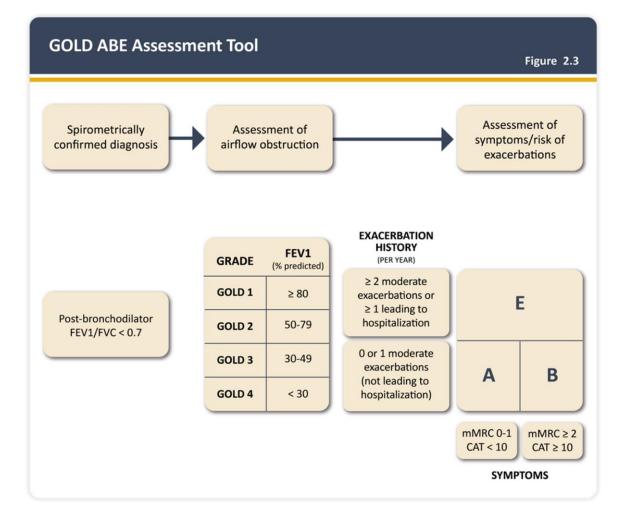
TOTAL SCORE:

Exacerbations and Multimorbidity

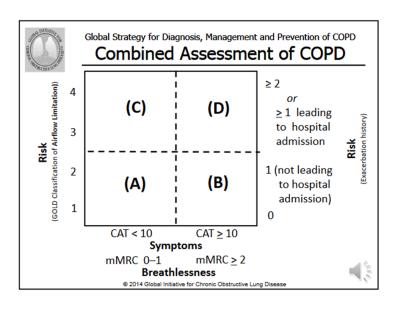
Exacerbations (ECOPD)

Episodes of acute respiratory symptom worsening. ECOPD impacts significantly:

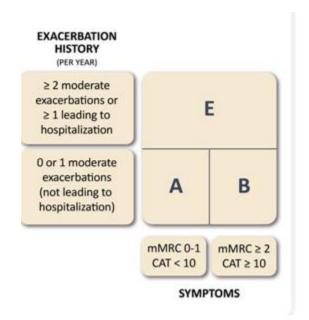
- The rate of lung function decline
- The prognosis of the patient
- Healthcare costs of COPD


The best predictor of having frequent exacerbations (defined as two or more exacerbations per year) is the previous history of exacerbations

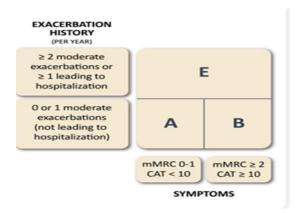
Multimorbidity

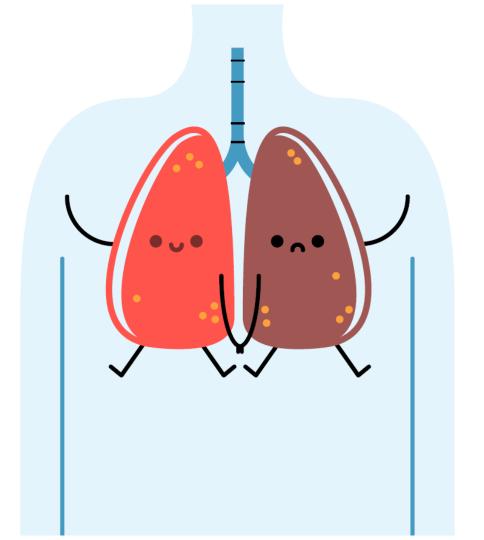

Comorbid conditions should be looked for routinely, and treated appropriately if present, in any patient with COPD. Frequent multimorbid diseases in COPD include:

- Cardiovascular disease
- Metabolic syndrome
- Osteoporosis
- Depression
- Anxiety
- Weight loss


Combined Assessment of COPD

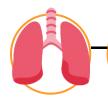
GOLD 2022 vs GOLD 2023


VS



Test your knowledge

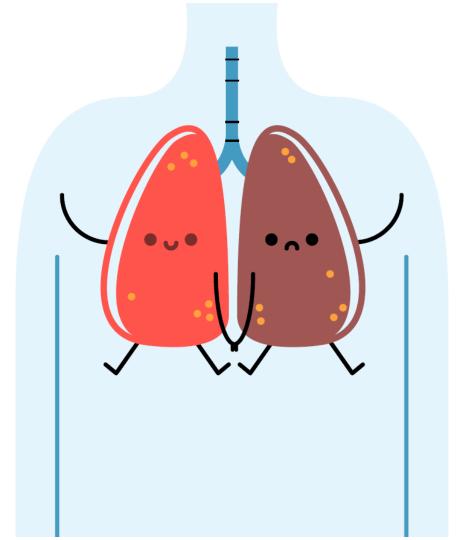
A 56 years hispanic woman diagnosed with COPD. She presented to the hospital with 1 exacerbation history **leading to the hospital**, Her mMRC questionnaire score is one, her CAT questionnaire score is 12. Based on the 2023 GOLD COPD classification, into what group would this patient fall?


- A. Category A
- B. Category B
- C. Category C
- D. Category D
- E. Category E

Complications of Progressive COPD

Pulmonary Hypertension (PH-COPD)

- May occur in up to 30% of patients
- Associated with increased mortality
- Therapy used in pulmonary hypertension provides conflictive results in PH-COPD
 - Endothelin receptor antagonist
 - Phosphodiesterase-5 Inhibitors
 - Prostacyclin analogues
 - Pulmonary vasodilators are not recommended in patients with PH-COPD

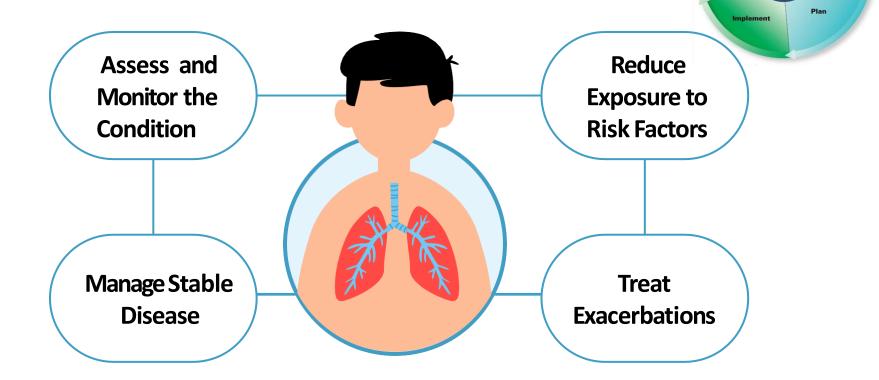

Cor Pulmonale

- Right-sided heart failure secondary to pulmonary hypertension
- Mainstay therapy is long-term oxygen and diuretics
- Cardiac glycosides have no role in cor pulmonale
- Beta blockers are indicated to treat systolic heart failure
 - Associated with improve overall survival

Complications of Progressive COPD

- Secondary to chronic hypoxemia
- Can be improved by:
 - Continuous oxygen therapy
 - Periodic phlebotomy if oxygen therapy is not sufficient
 - Indicated if the hematocrit is above 55%-60% and patient is experiencing CNS effects

Desired Outcomes

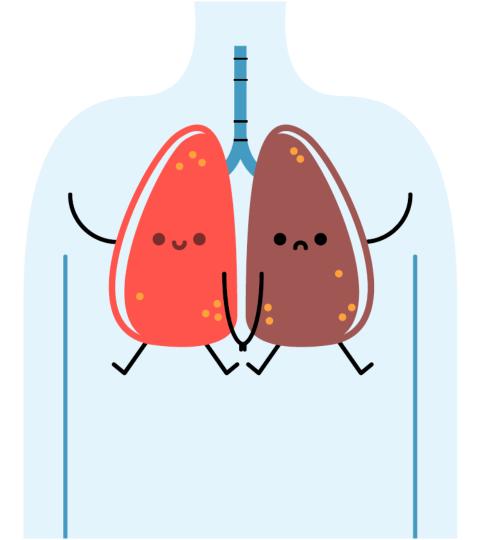

Prevention

- Limiting or eliminating tobacco smoke
- Reduce environmental irritants

Management

- Prevent disease progression
- Relieve symptoms
- Improve exercise tolerance
- Improve overall health status
- Prevent and treat exacerbations
- Prevent and treat complications
- Reduce morbidity and mortality

General Approach to Treatment



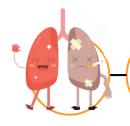
Collect

Patient-Centered Assess

Follow-up:

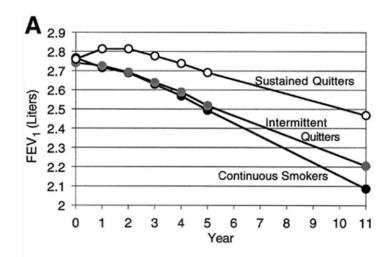
Monitor and

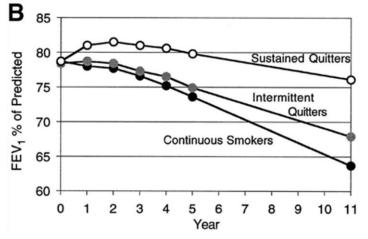
Non-Pharmacologic Therapy


Smoking Cessation

- Single most important intervention in preventing development or progression of COPD
- Clinicians should bepersistent in their motivational effort to determine the patient's readiness and support cessation attempts
- Leads to decreased symptomatology
- Slows rate of decline of pulmonary function

Five-step strategy for smoking cessation program (5 A's)

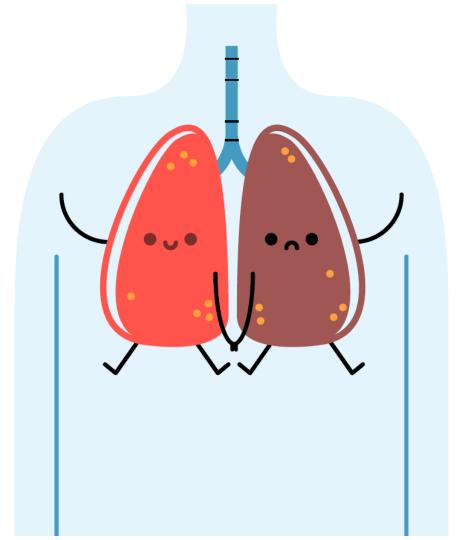

Ask	Identify all patients who use tobacco
Advice	Urge patients who use tobacco to quit
Assess	Determine willingness and motivation
Assist	Provide support for the patient to quit
Arrange	Follow-up and monitor abstinence


Non-Pharmacologic Therapy

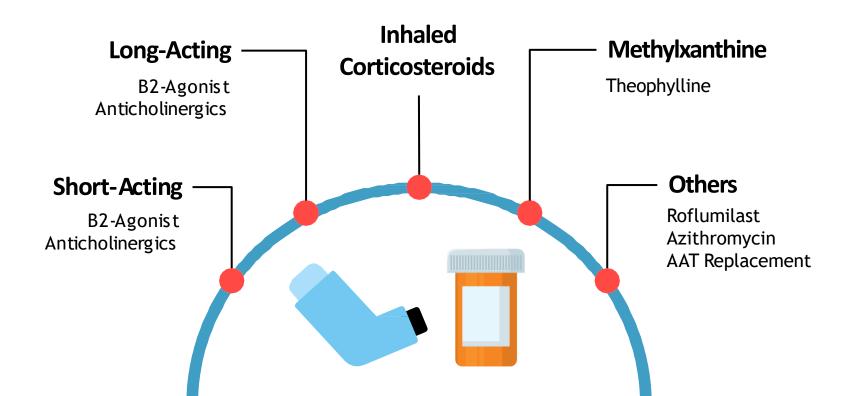
Lung Health Study

- 5-year prospective trial
- Smokers with early COPD were randomly assigned to 3 groups:
 - Smoking cessation intervention+ inhaled ipratropium TID
 - Smoking cessation alone
 - No intervention
- 11-year follow-up revealed a rate of decline in FEV1 in subject who continued to smoke was more than twice the rate of sustained quitters

Non-Pharmacologic Therapy


Long-Term Oxygen Therapy

- Supplemental oxygen increases survival in COPD patients with hypoxemia at rest
- Survival benefits are seen after 5 years of use
- Increased walking distance
- Improvement in neuropsychological conditions
- Reduced length of stay(LOS)


Vaccination

- Vaccines reduce the risk of respiratory infections that could lead to an exacerbation
 - Influenza
 - Pneumococcal infection
 - COVID-19
 - Tdap
 - Zoster

Efeito nos Brônquios

Pharmacologic Therapy

Initial Pharmacological Treatment

≥ 2 moderate exacerbations or ≥ 1 leading to hospitalization **GROUP E**

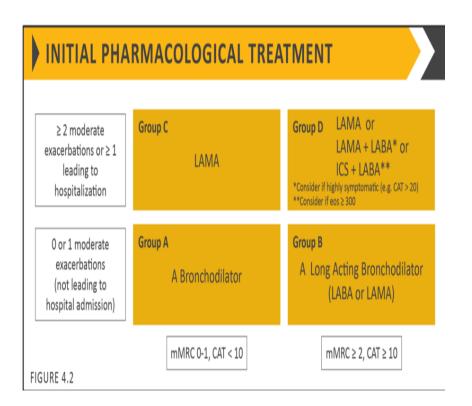
LABA + LAMA*

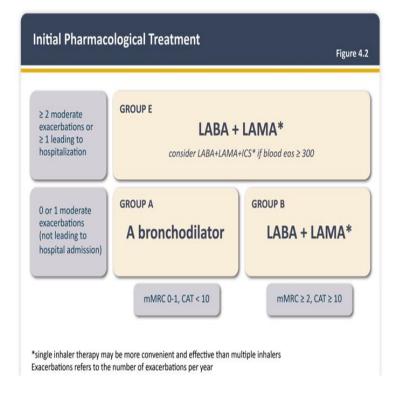
consider LABA+LAMA+ICS* if blood eos ≥ 300

0 or 1 moderate exacerbations (not leading to hospital admission) **GROUP A**

A bronchodilator

GROUP B

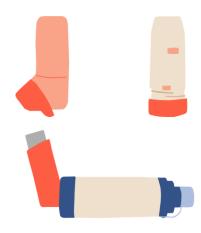

LABA + LAMA*


mMRC 0-1, CAT < 10

 $mMRC \ge 2$, $CAT \ge 10$

*single inhaler therapy may be more convenient and effective than multiple inhalers Exacerbations refers to the number of exacerbations per year

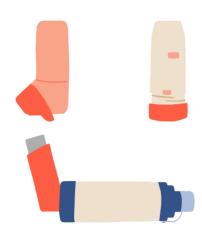
GOLD 2022 vs GOLD 2023


Pharmacologic Therapy

Inhaled Medications

- Requires patient knowledge and skill
- Various inhalation devices
- MDI, DPI, SMI and nebulizers
- There is no advantage of one delivery system over another
- Periodic and frequent observation by clinician is required to assess optima use

"Pharmacist should assess patient's administration inhaler technique before recommending a change in COPD therapy"


"Treatment of multiple inhalation devices adds complexity and may adversely impact adherence and disease management"

Pharmacologic Therapy

Inhaled Medications

- To increase adherence:
 - Share decision making, between the patient and the health professional, when selecting an inhaler.
 - Provide pick-up reminders.
 - Provide education of the disease, medication devises, techniques of inhalation, prevention factors.
 - Emphasized the importance of adherence.
 - Maintain good communication with the patient.

Pharmacologic Therapy - Bronchodilators

Short-Acting

- Initial recommended therapy for COPD patients who experience occasional symptoms
- Recommended for rescue or asneeded
- Choices include short-acting B2agonist and anticholinergicagents
- Combination of short-acting agents is reasonable for patients who do not achieve symptom control

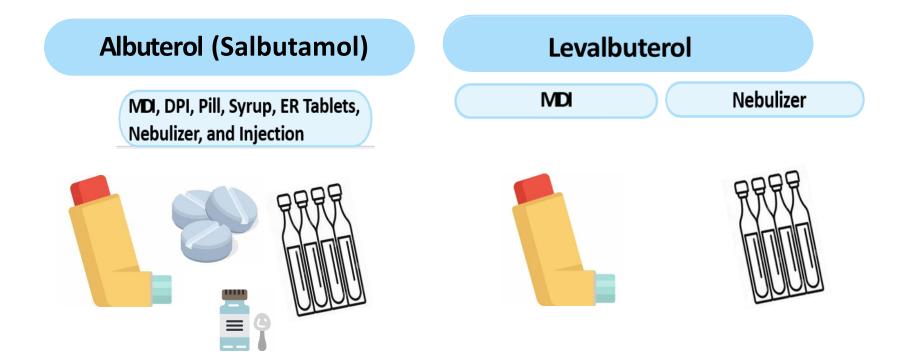
Long-Acting

- For patients who experience persistent symptoms or in whom short-acting therapies do not provide adequate relief
- Are recommended as initial therapy in Group B and E
- Choices include LABA and LAMA
- LAMA appear to be more effective in preventing exacerbations but in regards of symptom control, both are equally effective


Pharmacologic Therapy - Short-Acting B₂-Agonists

Pharmacological Effect

- Cause bronchodilation by increasing cyclic adenosine monophosphate (cAMP), which is responsible for relaxation of bronchial smooth muscle
- May also improve mucociliary clearance within the airways
- Improve respiratory symptoms and exercise tolerance

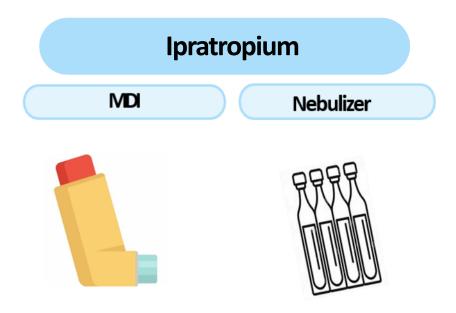

Adverse Effects

- Generally, well tolerated
- Older patients may be more predisposed to adverse effects

Pharmacologic Therapy - Short-Acting B₂-Agonists

Pharmacologic Therapy - Short-Acting Anticholinergics

Pharmacological Effect


- Competitive inhibition of muscarinic receptor produces bronchodilation in bronchial smooth muscle and mucus glands
- Similar improvement in pulmonary function compared to B₂-agonists
- Slow onset of action compared to B₂agonists

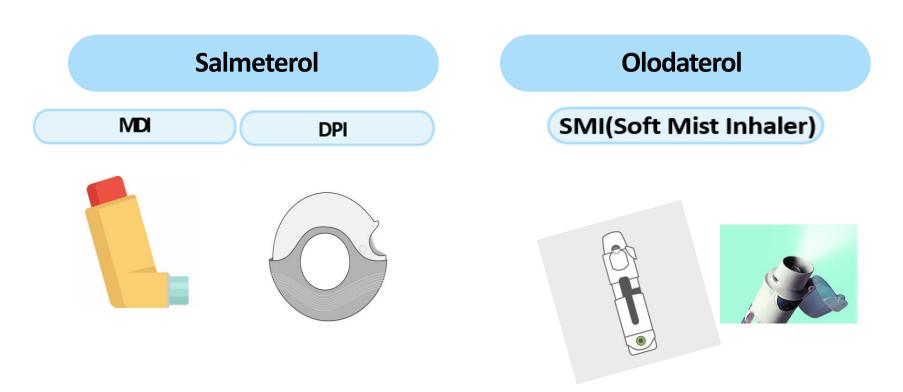
Adverse Effects

 Lack systemic absorption, which greatly diminishes anticholinergic adverse effects

Pharmacologic Therapy - Short-Acting Anticholinergics

Pharmacologic Therapy - Long-Acting B₂-Agonists

Benefits


- Compared to SABAs, LABAs provide superior improvement in:
 - Lung function
 - Symptoms
 - Exacerbation rate
- Better alternative when patient require shortacting B2-agonist on schedule basis
- LABA monotherapy in COPD is not associated with increased mortality as opposed to asthma

Available Agents

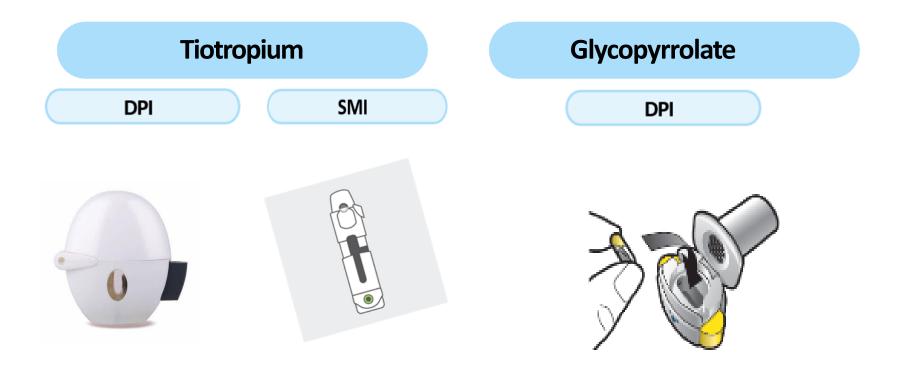
- Salmeterol
- Formoterol
- Vilanterol (Only available coformulated)
- Olodaterol

None are recommended for acute relief of symptoms in COPD

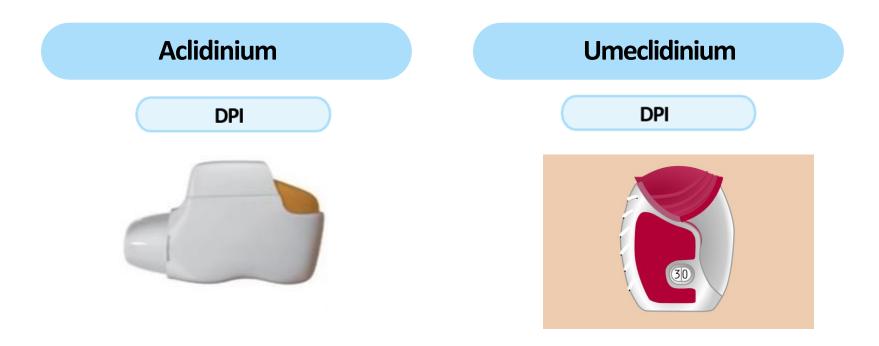
Pharmacologic Therapy - Long-Acting B₂-Agonists

Pharmacologic Therapy - Long-Acting Anticholinergics

Benefits


- More selective than ipratropium for M3 receptors
- They dissociate slowly from receptor, resulting in prolonged bronchodilation
- Onceor twice daily dosing
- LAMA provide greater reduction in exacerbation frequency compared to LABAs (primarily tiotropium)
- Should be considered as first-line monotherapy for patients at high risk of exacerbation

Available Agents


- Tiotropium
- Glycopyrrolate
- Aclidinium
- Umeclidinium

None are recommended for acute relief of symptoms in COPD

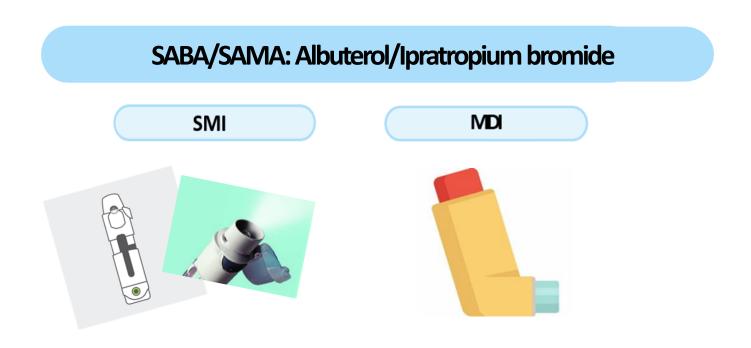
Pharmacologic Therapy - Long-Acting Anticholinergics

Pharmacologic Therapy - Long-Acting Anticholinergics

Pharmacologic Therapy - Bronchodilators Combinations

Benefits

- Used in the treatment of COPD as symptoms worsen over time
- Bronchodilators with different mechanisms of action allows the lowest possible effective doses to be used and reduces potential adverse effects from individual agents


Short-Acting

- May preferred for patients experiencing persistent symptoms
 - Although step-up to long-acting bronchodilator monotherapy is usually preferred

Long-Acting

- Persistent symptoms
- Recurrent exacerbations on bronchodilator monotherapy

Pharmacologic Therapy - Short-Acting Combinations

Pharmacologic Therapy - Long-Acting Combinations

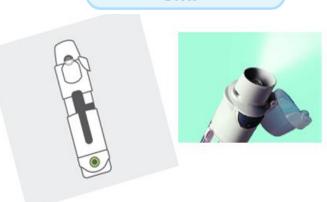
Formoterol/Aclidinium

DPI

Formoterol/Glycopyrrolate


MD

Pharmacologic Therapy - Long-Acting Combinations


Vilanterol/Umeclidium

DPI

SMI: Olodaterol/Tiotropium

SMI

Pharmacologic Therapy - Inhaled Corticosteroids

Pharmacological Effect

- Anti-inflammatory mechanisms whereby corticosteroids exert their beneficial effect in COPD include:
 - Reduction in capillary permeability to decrease mucus
 - Inhibition of release of proteolytic enzymes from leukocytes
 - Inhibition of prostaglandins

Available Agents

- Beclomethasone
- Fluticasone
- Mometasone
- Budesonide

Systemic Corticosteroids should be avoided as chronic therapy in COPD

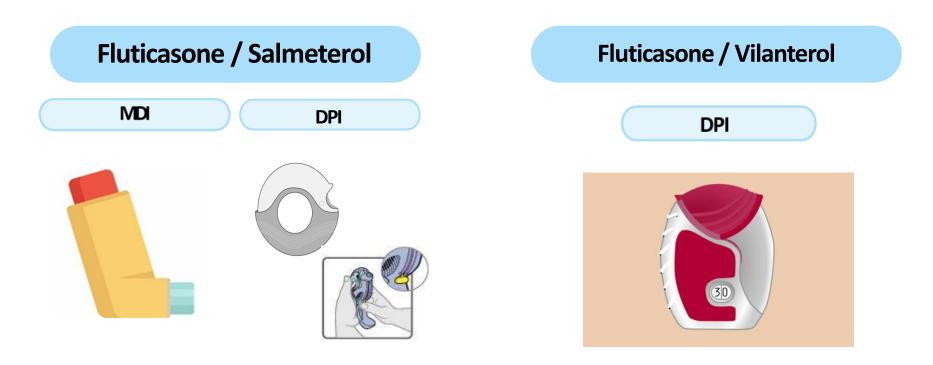
Pharmacologic Therapy - Inhaled Corticosteroids

Benefits

- Considered in patients with COPD with high risk of exacerbation (category E):
 - Decrease in exacerbation frequency
 - Time to first exacerbation
- Recommended for:
 - Initial therapy in patients at high risk of exacerbations with blood eosinophil count ≥ 300 cells/µL
 - Escalation therapy in patients with recurrent exacerbations despite optimal therapy

ICS Monotherapy is not recommended

Adverse effects


Risk of Pneumonia and Mycobacterial Infections

- Risk factors include:
 - Age >55 years
 - o BMI < than 25 kg/m²
 - Current smoker
 - History of exacerbation or pneumonia (last 12 months)

Risk of Fractures

Pharmacologic Therapy - ICS/LABACombinations

Pharmacologic Therapy - ICS/LABACombinations

Pharmacologic Therapy - Triple Combinations

ICS + LABA + LAMA

Fluticasone / Vilanterol / Umeclidinium

DPI

Budesonide / Formoterol / Glycopyrrolate

MDI

Test your knowledge

Which of the following pharmacotherapy strategies is recommended for a patient newly diagnosed with Gold stage 1, category A COPD?

- A. Start an inhaled corticosteroid
- B. Start an inhaled bronchodilator
- C. Start an oral leukotriene modifier
- D. Start supplemental oxygen

Test your knowledge

Which of the following is a risk associated with inhaled corticosteroid use for the treatment of COPD?

- A. Increased mortality
- B. Leukopenia
- C. Lupus
- D. Pneumonia

Pharmacologic Therapy - Methylxanthines

Pharmacological Effect

- Methylxanthines produce bronchodilation through numerous mechanisms, including:
 - Inhibition of phosphodiesterase → increasing cAMP levels
 - Inhibition of calcium ion influx into smooth muscles
 - o Prostaglandin antagonism
 - Stimulation of endogenous catecholamines
 - Adenosine receptor antagonism
 - Inhibition of release of mediators from mast cells andleukocytes

Available Agents

- Theophylline
- Sustained release preparations are the most appropriate for long term management

Pharmacologic Therapy - Methylxanthines

Current Use

- Chronic theophylline use for patients with COPD may offer improvements in lung function and gas exchange
 - Reduce dyspnea
 - Increase exercise tolerance
- Generally considered for patients who are intolerant or unable to use bronchodilators

Disadvantages

- It's a challenging medication to add in COPD therapybecause:
 - Dosing challenges
 - Monitoring requirements
 - Interpatient variability in pharmacokinetics
 - Potential drug interactions
 - Risk of toxicities

Pharmacologic Therapy - Phosphodiesterase 4Inhibitors

Pharmacological Effect

- Inhibition of PDE4 results in:
 - Relaxation of airway smooth muscle cells
 - Diminished inflammatory mediators such as TNF-α and IL-8

Available Agents

Roflumilast

Clinical Use

- Recommended for patients with:
 - Recurrent exacerbations despite treatment with triple inhalation therapy
 - Recurrent exacerbation on dual long-acting bronchodilators (LABA/LAMA) who are not candidate for ICS

Cannot be used in combination with Theophylline

Pharmacologic Therapy - Phosphodiesterase 4Inhibitors

Adverse Effects

Bothersome adverse effects that may limit therapy

Diarrhea

Weight loss

Neuropsychiatric Effects

Interactions

- Metabolized by CYP3A4 and 1A2
- Coadministration with strong inducers of inhibitors cytochrome P450 is not recommended

Pharmacologic Therapy - Antibiotics

Azithromycin

- Has proven clinical benefit in certain pulmonary conditions due to their antiinflammatory and antimicrobial properties
- Can be added to therapy for 12 months for patients with recurrent exacerbations despite optimal therapy and who are not active smokers

Active smokers are not candidates for chronic azithromycin treatment

Adverse Effects

Colonization with macrolide-resistant bacteria

Hearing deficits

QT Prolongation

Increases the risk of cardiac events

Pharmacologic Therapy - α_1 -Antitrypsin Replacement

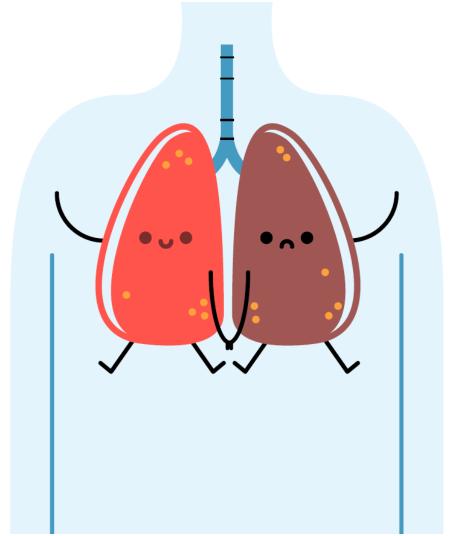
Clinical Use

- For patients with inherited AAT deficiency (AATD)-associated emphysema
- Referred as augmentation therapy
 - Weekly infusions of pooled human AAT
- Treatment also focuses on:
 - Reducing risk factors such as smoking
 - Symptom management with bronchodilators

Augmentation Therapy can cost over \$50,000 annually

Pharmacologic Therapy – New Product in the Future ...

IL-5 medications


COPD can result from several different mechanisms. Newer treatments aim to target those specific causes in order to eliminate them and stop inflammation.

For example, some people with COPD have many eosinophils, a specific type of white blood cell. A drug called anti-interleukin-5 (IL-5) targets airway inflammation caused by eosinophils. But more research is needed.

Stem cell therapy

Clinical trials are also evaluating the use of stem cell therapy for the treatment of COPD. Stem cells are undifferentiated cells that are fed into the body.

Once they're injected, they then become specialized to a specific need — in this case, regenerating lung tissue and reversing lung damage (could be used to create new alveolar cells)

Exacerbation of Chronic Obstructive Pulmonary Disease (ECOPD)

- GOLD An exacerbation of chronic obstructive pulmonary disease is defined as an event characterized by increased dyspnea and/or cough and sputum that worsens in < 14 days which may be accompanied by tachypnea and/or tachycardia and is often associated with increased local and systemic inflammation caused by infection, pollution, or other insult to the airways
- Exacerbations have a significant impact on the natural course of COPD and occur more frequently in patients with
 - Advanced age
 - Significant airflow limitation
 - Comorbid conditions

Signs and Symptoms of ECOPD

Signs

- Fever
- Wheezing

Symptoms

- Increased sputum volume
 - May be purulent
- Acutely worsening dyspnea
- Chest tightness
- Malaise, fatigue

Diagnosis

- Patients with COPD are at increased risk of other acute events that may also mimic or aggravate ECOPD, particularly:
 - Decompensated heart failure
 - Pneumonia
 - Pulmonary embolism
- Severity of symptoms should be established using visual analogue dyspnea scale (VAS)
- Establishing the cause of exacerbation will help guide further treatment
 - Viral
 - Bacterial
 - Environmental

Classification of the Severity of COPD Exacerbations Figure 5.1 **COPD Patient with Suspected Exacerbation** Confirm ECOPD Diagnosis and Episode **Consider Differential Diagnosis** Severity Variable thresholds to determine severity Severity Heart failure Pneumonia Mild (default) Dyspnea VAS < 5 RR < 24 breaths/min Pulmonary embolism HR < 95 bpm Resting SaO₂ ≥ 92% breathing ambient air (or patient's usual oxygen prescription) AND change ≤ 3% (when known) Appropriate testing and CRP < 10 mg/L (if obtained) treatment Moderate Dyspnea VAS ≥ 5 (meets at least RR ≥ 24 breaths/min three of five*) HR ≥ 95 bpm Resting SaO2 < 92% breathing ambient air (or patient's usual oxygen prescription) AND/OR change > 3% (when known) CRP ≥ 10 mg/L *If obtained, ABG may show hypoxemia (PaO₂ ≤ 60 mmHg) and/or hypercapnia (PaCO₂ > 45 mmHg) but no acidosis Dyspnea, RR, HR, SaO₂ and CRP same as Severe moderate ABG show new onset/worsening hypercapnia and acidosis (PaCO₂ > 45 mmHg and pH <7.35) Determine etiology: viral testing, sputum culture, other Adapted from: The ROME Proposal, Celli et al. (2021) Am J Respir Crit Care Med. 204(11): 1251-8. Abbreviations: VAS visual analog dyspnea scale; RR respiratory rate; HR heart rate; SaO₂ oxygen saturation; CRP C-reactive protein; ABG arterial blood gases; PaO2 Arterial pressure of oxygen.

Complications

Acute Respiratory Failure

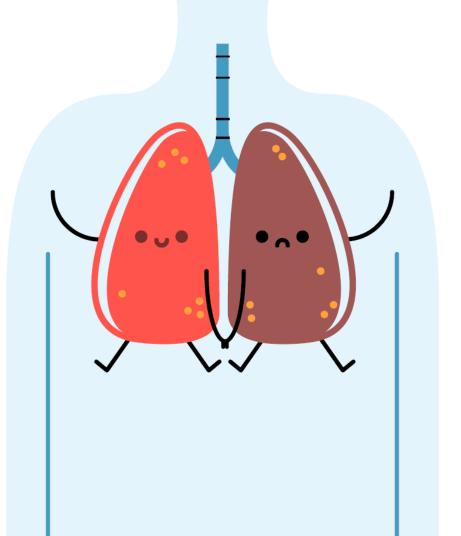
- ABG usually is obtained to assess the severity of an exacerbation
- The diagnosis of acute respiratory failure in COPD is made based on an acute change in the ABGs
- Clinical manifestations of respiratory failure include:
 - Confusion
 - Tachycardia
 - Cyanosis
 - Hypotension
 - Irregular breathing
 - Unconsciousness

Severity

Mild (default)

No Respiratory Failure

Moderate (meets at least three of five*)


Non-Life-Threatening Respiratory Failure

Severe

Life-Threatening Respiratory Failure

Prognosis

- Mortality rates are higher for patients admitted to the hospital
 - Higher rates among those admitted to ICU
 - COPD exacerbations contribute to in-hospital mortality, deaths after discharge, and the decline of lung function
- Many patients do not return to their baseline status for several weeks after an ECOPD
- 50% of patients hospitalized for an exacerbation are readmitted within 6 months
 - Risk factors for readmission include:
 - FEV1 less than 50% of predicted
 - The severity of exacerbation
 - Previous exacerbation frequency
 - Presence of comorbidities
 - Inadequate antibiotic therapy

Desired Outcomes

Minimize Negative Consequences of ECOPD

- Reduce symptoms
- Prevent hospitalization
- Shorten hospital stay
- Prevent acute respiratory failure
- Prevent death

Prevent Future Exacerbations

Treatment - Non-pharmacologic

Noninvasive positive-pressure ventilation

- NPPV provides ventilatory support with oxygen and pressurized airflow using a face or nasal mask with a tight seal but without endotracheal intubation
- NPPV has been associated with
 - Lower mortality
 - Lower intubation rates
 - Shorter hospital stays for COPD exacerbations
- Patients with severe acidosis (pH < 7.25) or respiratory arrest should not be considered for NPPV
- Patients who fail a trial of NPPV should be considered for intubation and mechanical ventilation

Treatment - Pharmacologic

Bronchodilators

- SABAs are preferred for their rapid onset
 - Doses and frequency are increased to achieve symptomatic relief
- Anticholinergics are added if SABA does not achieve sufficient symptomatic relief
- There is no difference in FEV₁ between MDI or Nebulization
 - Nebulization is preferred in most cases based given it's ease of delivery
- Theophylline should be avoided due to concern of adverse effects

not be discontinued during Exacerbation

Treatment - Pharmacologic

Antibiotics

- Bacterial infections cause most ECOPD
- Their use remain controversial

Indicated in 3 Scenarios

Patients with 3 cardinalsymptoms

Dyspnea, sputum volume, and sputum purulence

Patients with 2 cardinal symptoms

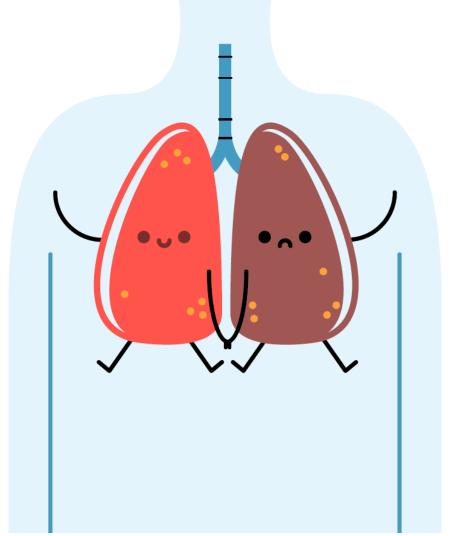
One of them has to be increases purulent sputum

Patients requiring mechanical ventilation

Invasive or noninvasive

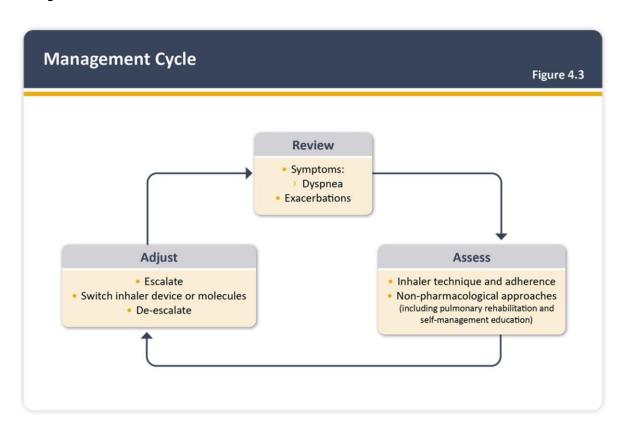
Days of Therapy

 Therapy with antibiotics generally should be continued for at least 5 to 7 days



Patient Characteristic	Likely pathogens	Recommended Therapy
Uncomplicated exacerbations:<4 exacerbations per yearNo comorbid illness	H. influenzae M. catarrhalis S. pneumoniae H. parainfluenzae	Azithromycin Second- and third-generation cephalosporins Doxycycline
 Complicated exacerbations: Age ≥65 and >4 exacerbations per year Presence of comorbid illness 	Above pathogens plus: Penicillin-resistant S. pneumoniae B-lactamase producing H. influenzae B-lactamase producing M. catarrhalis	Amoxicillin/Clavulanate Respiratory fluoroquinolones
Risk factors formultidrug-resistant pathogens Chronic corticosteroid therapy Recent hospitalization (90 days) Recent antibiotic treatment (90 days) Resident of long-term care facility	Above pathogens plus: Some enteric gram negative bacteria and P. aeruginosa	IV therapy may be required: Levofloxacin Piperacillin-Tazobactam Ceftazidime Cefepime

Test your knowledge


Which of the following medication classes is utilized in the treatment of an acute exacerbation of COPD?

- A. Short-acting beta-agonists
- B. Long-acting beta-agonists
- C. Inhaled corticosteroids
- D. Long-acting muscarinic antagonists

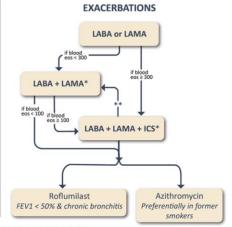
Follow-Up

Follow-Up

Dyspnea

- Follow up can be applied to any patient who is in maintenance treatment irrespective of their GOLD group allocation
- Patients experimenting persistent breathlessness on bronchodilator monotherapy should be switched to two long-acting bronchodilators
 - If second agent provides not improvement a change of inhaler or molecule may bewarranted

Follow-up Pharmacological Treatment


Figure 4.4

0

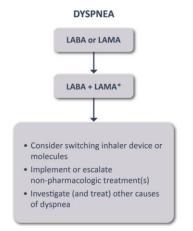
IF RESPONSE TO INITIAL TREATMENT IS APPROPRIATE, MAINTAIN IT.

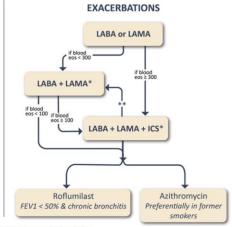
- IE NO
 - IF NOT: Check adherence, inhaler technique and possible interfering comorbidities
 - · Consider the predominant treatable trait to target (dyspnea or exacerbations)
 - Use exacerbation pathway if both exacerbations and dyspnea need to be targeted
 - · Place patient in box corresponding to current treatment & follow indications
 - · Assess response, adjust and review
 - These recommendations do not depend on the ABE assessment at diagnosis

- *Single inhaler therapy may be more convenient and effective than multiple inhalers
- **Consider de-escalation of ICS if pneumonia or other considerable side-effects. In case of blood eos ≥ 300 cells/µl de-escalation is more likely to be associated with the development of exacerbations

Exacerbations refers to the number of exacerbations per year

Follow-Up


Exacerbations


- Patient should receive an education of new treatment or current treatment before discharge
- Post-discharge follow-up should be made to reinforce patient education and adherence
- Follow-up in 1-4 weeks have been associated reduction in readmission due to ECOPD
 - Lack of discharge follow-up increases
 90-day mortality

Follow-up Pharmacological Treatment

Figure 4.4

- 0
 - IF RESPONSE TO INITIAL TREATMENT IS APPROPRIATE, MAINTAIN IT.
- IF
 - IF NOT: Check adherence, inhaler technique and possible interfering comorbidities
 - · Consider the predominant treatable trait to target (dyspnea or exacerbations)
 - Use exacerbation pathway if both exacerbations and dyspnea need to be targeted
 - · Place patient in box corresponding to current treatment & follow indications
 - · Assess response, adjust and review
 - · These recommendations do not depend on the ABE assessment at diagnosis

^{*}Single inhaler therapy may be more convenient and effective than multiple inhalers

Exacerbations refers to the number of exacerbations per year

^{**}Consider de-escalation of ICS if pneumonia or other considerable side-effects. In case of blood eos ≥ 300 cells/µl de-escalation is more likely to be associated with the development of exacerbations

Follow up - Inhaled Corticosteroids

Withdrawing ICS Therapy

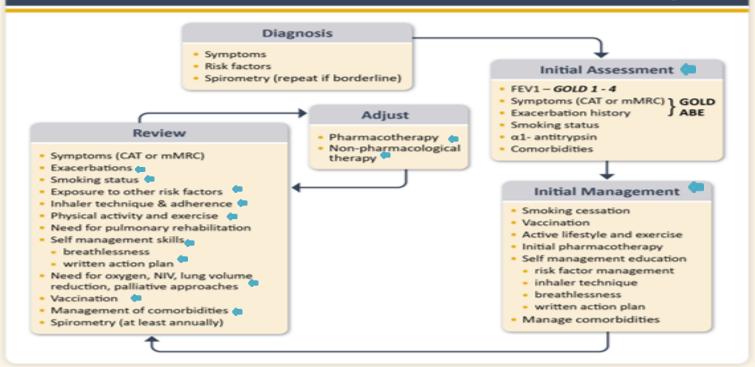
- Recently clinicians have advocated for withdrawing ICS therapy in selected patients
- ICS may be withdrawn from therapy if there is concern for respiratory infections or adverse effects

Recommend ICS Withdrawal

1	Patients with no clearguideline- based indication
2	Patients experiencing adverse effects with ICS therapy and limited therapeutic benefit
3	Patients experiencing no perceived therapeutic benefit with ICS
4	Blood eosinophils less than 100 cells/µL

Test your knowledge

Which of the following genetic factors is a risk for developing COPD?


- A. Poor metabolizer status for cytochrome 3A4
- B. G6PD enzyme deficiency
- C. Atopic phenotype
- D. Alpha-1 antitrypsin deficiency

Test your knowledge

Which of the following is recommended for a patient who continues to experience symptoms of COPD despite treatment with a single long-acting bronchodilator therapy?

- A. Add a scheduled short-acting bronchodilator agent
- B. Add an inhaled corticosteroid
- C. Add another long-acting bronchodilator
- D. Add a chronic anti-inflammatory such as azithromycin

References

Venkatesan P. GOLD COPD report: 2023 update. Lancet Respir Med. 2023;11(1):18. doi:10.1016/S2213-2600(22)00494-5

Anthonisen NR, Connett JE, Murray RP. Smoking and lung function of Lung Health Study participants after 11 years. *Am J Respir Crit Care Med*. 2002;166(5):675-679. doi:10.1164/rccm.2112096

Bourdet SV, Williams DM. Chronic Obstructive Pulmonary Disease. In: DiPiro JT, Yee GC, Haines ST, Nolin TD, Ellingrod VL, Posey L. eds. *DiPiro's Pharmacotherapy: A Pathophysiologic Approach*, *12th Edition*. McGraw Hill; 2023. Accessed April 20, 2023. https://accesspharmacy.mhmedical.com/content.aspx?bookid=3097§ionid=267239611

Leuppi JD, Schuetz P, Bingisser R, et al. Short-term vs conventional glucocorticoid therapy in acute exacerbations of chronic obstructive pulmonary disease: the REDUCE randomized clinical trial. *JAMA*. 2013;309(21):2223-2231. doi:10.1001/jama.2013.5023

Strnad P, McElvaney NG, Lomas DA. Alpha₁-Antitrypsin Deficiency. *N Engl J Med*. 2020;382(15):1443-1455. doi:10.1056/NEJMra1910234

References

Jia X, Zhou S, Luo D, et al. Effect of pharmacist-led interventions on medication adherence and inhalation technique in adult patients with asthma or COPD: A systematic review and meta-analysis. J Clin Pharm Ther. 2020;00:1-14.

Schnipper JL., Kirwin JL, Cotugno MC, et al. Role of Pharmacist Counseling in Preventing Adverse Drug Events After Hospitalization. ARCH INTERN MED/VOL 166, MAR 13, 2006.

(2021, October 4). New and Current Treatments for COPD. Healthline. Retrieved June 22, 2023, from https://www.healthline.com/health/copd/new-treatments-copd

Thanks!

Do you have any questions?

sayel.rivera@upr.edu

wanda.marrero1@upr.edu

